

Adaptive sampling with a fleet of autonomous sailing boats using artificial potential fields

F. Plumet

H. Saoud

F. Ben Amar

Intelligent Systems and Robotics Institute (ISIR), UPMC Univ. Paris 06, CNRS UMR 7222, F-75005, Paris, France

Robotic Sailboats

- Growing activity since ~2006
- Main advantage (and drawback):
 - no need to have embedded power for propulsion
 - autonomy: can be fully autonomous during several days
- Applications
 - Ocean's monitoring
 - Surveillance
 - ...

Robotic Sailboats

Large(more than 2m) sailing robots

(a) Iboat II, ISAE (b) FASt, University of Porto (c) Pinta, University of Aberystwyth (d) Beagle-B, University of Aberystwyth (e) ASV Roboat, INNOC (f) Avalon, ETH Zurich (g) VAIMOS from ENSTA

and IFREMER

Robotic Sailboats

Commercial products

- (a)
- (b)

- (a) Saildrone (USA),
- (b) Sailbuoy, Offshore sensing AS(No)
- (c) MARS Mayflower Autonomous Research Ship (Project, UK)

(c)

Control architecture

- Control inputs:
 - Sail angle
 - ⇒ mainly acts on speed
 - Rudder angle
 - ⇒ mainly acts on heading
- Hypothesis: uncoupled

- Layered control architecture:
 - High level control: mission definition
 - Mid level control: local (reactive) path planning

Wind

Obstacles

Low level control

Local path planning

Objectives

- Autonomous navigation of a formation of sailboats to perform adaptive sampling (gradient following,...),
- Dynamic adaptation to environmental conditions (wind, current,...)
- Real-time on-board implementation

Solution

- Potential field based path planning method
- Virtual obstacles for no-go zones constraints

Local path planning

- Use of artificial potential fields method [Khatib87]:
- Principle : $U_t = U_g + \sum U_{ob} + U_{other}$
 - Attractive potential U_q attached to the goal (waypoint)
 - Repulsive potential U_{ob} attached to the obstacles
 - The resulting force (gradient of the potential) drives the robot towards the goal while avoiding obstacles
- Advantages/drawbacks: local
 - Not convenient for dense environment (many obstacles)
 - Can be stuck in local minima
 - Local method: numerical evaluation of the gradient in the vicinity of the vehicle
 - no need to re-compute the entire path in case of moving obstacles or goal

Exo-potential

Attraction to the goal

$$U_g = G_g \, d_g$$

 Repulsion from the obstacles

$$U_o^{(j)} = G_o \left(\frac{1}{d_o^{(j)}} - \frac{1}{d_{inf}} \right) + G_L \left(\frac{d_{inf} - d_o^{(j)}}{d_{inf}} \right)$$

$$G_L = G_{off} \left(\mathbf{V}.\mathbf{U} + ||\mathbf{V}|| \right)$$

Endo-potential

- Virtual obstacle, moving with the boat
 - ⇒ Encompass the specific kinematic of the sailboat (speed polar diagram)

$$U_w = \left\{ \begin{array}{ll} P_{ngz} & \text{if } \phi \in [\text{no-go zone}] \\ P_h + G_v \frac{V - V_{max}}{V_{max}} & \text{otherwise} \end{array} \right.$$

 $\varphi_{\!\!_{down}}$

• P_h: hysteresis potential to fit the cost of tack and gybe manoeuvers

Performance curves

→ TWS = 20 Kt

Local path planning

• Classical method: goal = waypoint

Simulation results

Field trials(Tiny-Sailboat)

Field trials (Large-Sailboat)

- Objective: taking into account the marine current in the local planning
 - ⇒ modify the speed polar diagram
- Hyp.: known current
- Rem. speed polar diagram:

• In other words:

$$\overset{\rightarrow}{\boldsymbol{V}}_b^I = \overset{\rightarrow}{\boldsymbol{V}}_b^C + \overset{\rightarrow}{\boldsymbol{V}}_c^I \quad \text{and} \quad \overset{\rightarrow}{\boldsymbol{V}}_w^I = \overset{\rightarrow}{\boldsymbol{V}}_w^C + \overset{\rightarrow}{\boldsymbol{V}}_c^I$$

 Speed polar diagram remains usable if both
 vectors are in the same frame:

- Effects of marine current on the speed polar diagram
 - Translation
 - Distortion

Wind and current potential fields (endo-potentials)

$$\vec{V}_w = \begin{bmatrix} 2\\0 \end{bmatrix} \qquad \vec{V}_c = \begin{bmatrix} 0.5\\0.5 \end{bmatrix}$$

Simulation results

$$\vec{V}_c = \begin{bmatrix} -0.5 \\ 0 \end{bmatrix}$$

0

100

200

- Cruising time:
 - classic PF: 10.8 s
 - adapted PF: 9.1 s

- Motivation: adaptive sampling of the oceans
 - ⇒ following a front or an eddy of some natural field (temperature, salinity, ...)

 Move a formation of sailboats in the direction defined by the gradient of the natural field

- Following a natural gradient fits well within the general framework of the local path planning using (artificial) Potential Fields.
- Remember that PF planning is a local method:
 - **Local** method: numerical evaluation of the gradient in the vicinity of the vehicle
 - ⇒ no need to re-compute the entire path in case of **moving** goal
- Previous work: use of a moving goal for line following with a sailboat

Example: line following between WP

- Basic idea:
 - the donkey follows the carrot,
 - the carrot follows the line.
- Easily done by defining the goal as a moving Line of Sight (LOS) Point
 - ⇒ moving attractive potential

Line following: Simulation results

Way point guidance

LoS line following

Guaranteed accuracy: less than the LoS length

• Define a rigid reference formation in a local frame $m{R}$

Example with a triangular formation

- Each real vehicle is "linked" to its ref. vehicle in the formation
 - For each real vehicle, the resulting force is:

$$\overset{(i)}{F} = \overset{\longrightarrow}{grad} \left(\overset{(i)}{U} \right) = \overset{(i)}{F_g} + \overset{(i)}{F_o} + \overset{(i)}{F_w}$$

Including marine current

with F_g = attractive force coming from the (i) ref. vehicle

• Drives the reference formation towards the goal (WP) or to follow some natural gradient $\rightarrow (\overrightarrow{T}, \theta)$

Choice of $(\overrightarrow{T}, \theta)$

- Translation : cruise control $\left| \overrightarrow{T} \right| = V_{max} dt K_v \, \overline{dist}$
- Rotation: arbitrary
 - $\theta = 0$: orientation remains constant in a fixed frame
 - θ such that $(2)S_{Ref}(3)S_{Ref} \perp \overrightarrow{T}$: formation is pointing toward the goal

• Simulation: reaching a way point (varying wind field)

• Simulation: reaching a way point (varying wind field)

• Simulation: reaching a way point (varying wind field)

Leader-Follower formation

PF planning applied to the ref. Leader

Simulation : following a natural field gradient (varying wind field)

Simulation : following a natural field gradient (varying wind field)

Simulation : following a natural field gradient (varying wind field)

PF planning **not** applied to the ref. formation
Constant orientation in a fixed frame

 Simulation: following a natural field gradient then follow an isoline (varying wind field)

 Simulation: following a natural field gradient then follow an isoline (varying wind field)

 Simulation: following a natural field gradient then follow an isoline (varying wind field)

PF planning **not** applied to the ref. formation
Constant orientation in a fixed frame

Conclusion

Formation control of sailboats for adaptive sampling

⇒ different features (Way point reaching, gradient or isoline following)

Includes wind and marine current

Light code

⇒ Easy on-board implementation

